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Motivation

Theorem (Lagrange, 1770)

Every positive integer can be written as
a sum of four squares.

Example

7 = 22 + 12 + 12 + 12

Question

In how many ways?
r4(n) = #{λ ∈ Z4 :

∑4
i=1 λ

2
i = n}.

Example

r4(7) = 4 · 24 = 64

r4(n) = 8, 24, 32, 8, 48, 96, 64, . . .

;



Sums of four squares

Approach #1

Write θ(q) =
∑∞

n=0 r4(n)qn.

Show that θ belongs to a finite dimensional vector space V .

Find a basis for V .

Represent θ in that basis and compare coefficients.

Approach #2

Use Quaternions - B〈i , j〉 =
(
−1,−1

Q

)
, O = Z〈i , j〉.

Count elements of O with norm n.

Reduce to count (right) O-ideals with norm n.

Reduce to prime powers.

Count separately for p = 2 and p 6= 2.



Modular curves

The upper half plane is H = {z ∈ C : =(z) > 0}.
It admits an action of GL+

2 (R) by Möbius transformations

γ =

(
a b
c d

)
: H→ H, z 7→ γz =

az + b

cz + d

For a discrete Γ ≤ GL+
2 (R), can form Y (Γ) = Γ\H.

Specific groups Γ of interest

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 mod N

}
Γ1(N) =

{(
a b
c d

)
∈ Γ0(N) : a, d ≡ 1 mod N

}
Note that γ 7→ d : Γ0(N)→ (Z/NZ)× has kernel Γ1(N).

Compactify using cusps

X (Γ) = Y (Γ) ∪ (Γ\P1(Q)), X0(N) = X (Γ0(N))



Modular forms

Fact: X (Γ) is a compact Riemann surface.

Example

Local coordinate at ∞ for X0(N) is q = e2πiz .

For Γ torsion-free, let M2(Γ) be differentials on X (Γ)
holomorphic on Y (Γ) with at most simple poles at the cusps.

Theorem (Riemann-Roch, 1865)

dimM2(Γ) = g(X (Γ)) + #cusps − 1

Let π : H→ X (Γ). For ω ∈ M2(Γ) can consider π∗(ω) = f (z)dz .

Example

For X0(N), if near ∞, ω = g(q) dq, then π∗(ω) = 2πi q g(q) dz



Modular forms, cusp forms and characters

Thus ω 7→ f (z) identifies M2(Γ) with hol. functions f : H→ C, s.t.

(cz+d)−2f (γz) dz = f (γz) d(γz) = f (z) dz ∀γ =

(
a b
c d

)
∈ Γ

M2(Γ) is the space of modular forms of level Γ (of weight 2).

Write S2(Γ) ⊆ M2(Γ) for the holomorphic differentials.

The map ω 7→ f (z) identifies S2(Γ) with the functions in
M2(Γ) that vanish at the cusps, called cusp forms.

(Z/NZ)× ' Γ0(N)/Γ1(N) acts on M2(Γ1(N)) via

f (z)d(z) 7→ f (γ0z)d(γ0z)

Write M2(N, χ) (resp. S2(N, χ) ) for the χ-isotypic
component, so f ∈ M2(N, χ) iff

f (γz) = χ(d)(cz + d)2f (z) ∀γ ∈ Γ0(N)



X0(4)

Example

We compute that

Γ0(4)\P1(Q) = {0, 1
2 ,∞},

X0(4) ' P1(C)

so dimM2(Γ0(4)) = 2.
The function θ(z) =

∑∞
n=0 r4(n)qn is holomorphic, and

θ(z + 1) = θ(z), θ

(
z

4z + 1

)
= (4z + 1)2θ(z),

hence θ ∈ M2(Γ0(4)). [Also invariant under z 7→ − 1
4z ]



Jacobi’s four-square theorem

Theorem (Jacobi, 1834)

r4(n) = 8
∑
4-d |n

d .

Proof.

Construct E2(z) = − 1
24 +

∑∞
n=1 σ(n)qn.

v1 = E2(z)− 2E2(2z), v2 = E2(2z)− 2E2(4z) ∈ M2(Γ0(4)).

From first two terms deduce θ(z) = 8v1 + 16v2∑
r4(n)qn = 8(E2(z)− 4E2(4z)) = 8

(∑
σ(n)qn −

∑
σ(n)q4n

)
yields r4(n) =

∑
4-d |n d .



Representation Numbers

More generally, if Q(x) =
∑

i≤j aijxixj is a quadratic form with
aij ∈ Z, we may consider

rQ(n) = #{λ ∈ Zk : Q(λ) = n}

and the function

θQ(z) =
∞∑
n=0

rQ(n)qn =
∑
λ∈Zk

qQ(λ)

is again a modular form.



Quadratic forms and Lattices

Let Q : V → Q be a positive definite quadratic space with
dimQ V = k with associated bilinear form

T (x , y) := Q(x + y)− Q(x)− Q(y).

Let Λ ⊆ V be an even integral lattice, so that Q(Λ) ⊆ Z.

Define ∆ = disc(Λ) = detT ∈ Z, and let ∆∗ =

{
∆ 2 - k
(−1)k/2∆ 2 | k

Given a lattice, we may construct associated theta series

θΛ(z) = θ
(1)
Λ (z) =

∑
λ∈Λ

qQ(λ), q = e2πiz

The level of Λ is the smallest N such that NQ(Λ]) ⊆ Z.
Then θΛ(z) ∈ Mk/2(N, χ∆∗), where χ∆∗(a) =

(
∆∗

a

)
.

Question

Can we study Λ by studying θΛ ? Is Λ 7→ θΛ injective?



Isometry and genus

We define the orthogonal group

O(V ) = {g ∈ GL(V ) : Q(gv) = Q(v)}
O(Λ) = {g ∈ O(V ) : gΛ = Λ}

and write SO(V ) and SO(Λ) for those with det(g) = 1. Lattices
Λ,Π are isometric, written Π ' Λ, if there exists g ∈ O(V ) such
that gΛ = Π. The genus of Λ is

gen(Λ) := {Π ⊆ V : Λp ' Πp for all p}.

The class set cls(Λ) = gen(Λ)/ ' is the set of (global) isometry
classes in gen(Λ). It is finite, by geometry of numbers.



Non-injectivity of θ

However, even the map θ : cls(Λ)→ Mk/2(N, χ∆∗) is not injective.

Example

Dk = {x ∈ Zk : 2 |
∑k

i=1 xi}
Ek = Dk + Z · 1

2 (1, . . . , 1)

Then disc(E8) = disc(E16) = 1, so θE16 , θE8⊕E8 ∈ M8(1).

dimM8(1) = 1 implies θE16 = θE8⊕E8 .

However, [E16] 6= [E8 ⊕ E8].

How do we know that?

Theorem (Freitag, 1983)

If Hg = {z ∈ Mg (C) : z t = z ,=(z) > 0}, then for z ∈ Hg

θ
(g)
Λ (z) =

∑
λ∈Λg

eπi Tr(λtTλz) ∈ M
(g)
k/2(N, χ∆∗)

Use g = 4.



Neighbors

Kneser’s theory of p-neighbors gives an effective method to
compute the class set; it also gives a Hecke action!
Let p - disc(Λ) be a prime; p = 2 is OK.
We say that a lattice Π ⊆ V is a p-neighbor of Λ, and write
Π ∼p Λ if

[Λ : Λ ∩ Π] = [Π : Λ ∩ Π] = p.

If Λ ∼p Π then:

disc(Λ) = disc(Π),

Π is integral, and

Π ∈ gen(Λ).

Moreover, there exists S such that every [Π] ∈ cls(Λ) is an
iterated S-neighbor of Λ.

Λ ∼p1 Λ1 ∼ p2 · · · ∼pr Λr ' Π

with pi ∈ S . Typically may take S = {p}.



Example - Computing the class set

Let Λ = Z4 with the quadratic form

Q(x1, x2, x3, x4) = x2
1 + x1x2 + x2

2 + x2
3 + x1x4 + x3x4 + 3x2

4

and bilinear form given by

[TΛ] =


2 1 0 1
1 2 0 0
0 0 2 1
1 0 1 6


Thus disc(Λ) = 29.

Λ′ =
1

2
Z(e2 + e4) + 2Ze3 + Ze1 + Ze4

with corresponding quadratic form

Q(x) = x2
1 + x1x2 + 4x2

2 + x1x3 + x2
3 + 3x1x4 + 2x2x4 + x3x4 + 3x2

4



Orthogonal modular forms

The space of orthogonal modular forms of level Λ is

M(O(Λ)) := {f : cls(Λ)→ C} ' Ch(Λ)

For p - disc(Λ) define the Hecke operator

Tp : M(O(Λ))→ M(O(Λ))

f 7→

[Λ′] 7→
∑

Π′∼pΛ′

f ([Π′])


The Hecke operators commute and are self-adjoint, hence there is
a basis of simultaneous eigenvectors - eigenforms. (Gross, 1999)



Example - square discriminant

Let Λ have the Gram matrix

[TΛ] =


2 0 0 1
0 2 1 0
0 1 6 0
1 0 0 6


so that disc(Λ) = detT = 112. Then h(Λ) = 3.
Write cls(Λ) = {[Λ] = [Λ1], [Λ2], [Λ3]}. Then a basis of eigenforms
is given by

φ1 = [Λ1] + [Λ2] + [Λ3], φ2 = 4[Λ1]− 6[Λ2] + 9[Λ3]

φ3 = 4[Λ1] + [Λ2]− 6[Λ3],

and we have

θ(φ1) =
5

12
+ q + 3q2 + 4q3 + 7q4 + 6q5 + 12q6 + O(q7) ∈ E2(11)

θ(φ2) = q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 + O(q9) ∈ S2(11)

where Tp(φ2) = λpφ2 with λ2 = 4, λ3 = 1, λ5 = 1, λ7 = 4, . . .



Relating the eigenvalues

Theorem (A., Fretwell, Ingalls, Logan, Secord, and Voight (2022),
consequence of Rallis (1982))

If k is even, φ is an eigenform and f = θ(g)(φ) 6= 0 with 2g < k:

L(φ, s) = L

(
χD∗ ⊗ f , std, s −

(
k

2
− 1

)) ( k
2
−1)−g∏

i=g−( k
2
−1)

ζ

(
s + i −

(
k

2
− 1

))
.

If g = 1, then obtain L(χD ⊗ Sym2(f ), s) and zeta factors so

λp = a2
p − χD∗(p)p

k
2
−1 + p

(
pk−3 − 1

p − 1

)
where ap are the eigenvalues of f .



Example - Nonsquare discriminant

Let Λ be as before with discriminant 29. By checking isometry we
compute w.r.t. basis [Λ′], [Λ]

[T2] =

(
1 2
3 4

)
, [T3] =

(
4 3
6 7

)
, [T5] =

(
18 9
18 27

)
, . . .

The constant function φ1 = [Λ] + [Λ′] is an Eisenstein series
with Tp(φ1) = (p2 + (1 + χ29(p)) + 1)φ1. Another eigenvector is
φ2 = [Λ]− 2[Λ′], with Tp(φ2) = λpφ2

λ2 = −1, λ3 = 1, λ5 = 9, λ7 = 4, λ11 = 17, . . .

But

θ(φ2) = q − 3

2
q2 +

3

2
q3 − 3q4 − 3q5 + O(q6)

is not an eigenform. We match them with the Hilbert modular
form labeled 2.2.29.1-1.1-a in the LMFDB.

https://www.lmfdb.org/ModularForm/GL2/TotallyReal/2.2.29.1/holomorphic/2.2.29.1-1.1-a


Towards a bijection?

Would like to have a bijection between orthogonal modular
forms and Hilbert modular forms, but... Consider
Q(x) = x2

1 + x2
2 + x2

3 + x1x4 + x2x4 + 3x2
4 with Gram matrix

[TΛ] =


2 0 0 1
0 2 0 1
0 0 2 0
1 1 0 6


and disc(Λ) = 40.

Then dim S(O(Λ)) = 1 6= 2 = dim S2(Z[
√

10]).

This is because of the lattice Λ2 with form
Q2(x) = x2

1 + x2
2 + 2x3 + x2x4 + 2x3x4 + 2x2

4 .

Although Λ2 /∈ gen(Λ1), it is everywhere locally similar to Λ1.



Similarity classes

We define the general orthogonal group

GO(V ) = {g ∈ GL(V ) : Q(gv) = µ(g)Q(v), µ(g) ∈ Q×}
GO(Λ) = {g ∈ GO(V ) : gΛ = Λ}

and write GSO(V ) and GSO(Λ) for those with det(g) > 0.
Lattices Λ,Π are similar, written Π ∼ Λ, if there exists g ∈ GO(V )
such that gΛ = Π. The similarity genus of Λ is

sgen(Λ) := {Π ⊆ V : Λp ∼ Πp for all p}.

The similarity class set scls(Λ) = sgen(Λ)/ ∼ is the set of (global)
similarity classes in sgen(Λ). It is finite, by geometry of numbers.



Main Theorem

Assume that k = 4.

Theorem (A., Fretwell, Ingalls, Logan, Secord, and Voight (2024))

Assume disc(Λ) = D0N
2, K = Q[

√
D0]. Then

S(GO(Λ)) ↪→ S2(NZK )GK

with image the projection of S2(NZK ;W = ε)D-new

GK = Gal(K |Q) acts naturally on the space of Hilbert
modular forms.

D is the product of the anisotropic primes.

For p | N, we set εp = −1 if p | D, else εp = 1.

Wp is the Atkin-Lehner involution at pZK | NZK .



More generally...

Works over a totally real field F .

Functorial, hence arbitrary weight.

Twisting by the spinor norm, can obtain other AL signs.

Can identify explicitly the space M(O(Λ)) using twisting by
Hecke characters and unit characters.

Lattices have to be residually binary everywhere.



Key ideas - Quaternions and even Clifford

The even Clifford algebra B = C0(V ) is quaternion with center K .
It also maps lattices in V to orders in B.
Even Clifford extends to a map

C0 : GSO(V )→ (B× × F×)/K×.

Theorem (A., Fretwell, Ingalls, Logan, Secord, and Voight (2024))

The even Clifford map induces an isomorphism

C ∗0 : Mρ(C0(Λ)×, ψ−1 ◦ NmK |F )ALF (C0(Λ)) −→ MC∗0 ρ
(GSO(Λ), ψ).

Sends P-neighbors to P-neighbors.

Sends p1-neighbors to pZK -neighbors.

Also induces C0 : GO(V )/F× → AutF (B), with

0→ B×/K× ' AutK (B)→ AutF (B)→ Gal(K |F )→ 0.

∼= [ A1 × A1 = D2, equiv. sl2 ⊕ sl2 ∼= so4]



Applications - non vanishing

We obtain commutative diagrams of Hecke modules

S(O)
ALF (O)
GKOO

JL

��

oo
C∗0 // S(GO(Λ))

θ
(2)
Λ
��

S(NZK ,W = ε)M-new
GK

// S (2)(Γ
(2)
0 (N), χK )

The bottom line is:

Yoshida lift when K = F × F and f , g are both cuspidal.

Saito-Kurokawa lift when K = F × F otherwise.

Asai lift when K is a field.

Shows that when K is a field (e.g. D = 4p (Kaylor, 2019)), θ2 is
injective (non-vanishing).



Applications - Hilbert modular surfaces

Corollary ((Chan, 1999), Theorem 1)

Let K = Q(
√
D), and let Yε be the components of the Hilbert

modular surface over K.∑
ε∈Cl+(K)/Cl+(K)2

(pg (Yε) + 1) =
∑

Λ

# cls(SO(Λ)),

where Λ ranges over genera of lattices of discriminant D.

Proof.

Main theorem implies dimQ S2(ZK ) = dimQ S(GSO(Λ)). But

# Cl+(K )/Cl+(K )2 = #µ(cls(GSO(Λ))) = dimQ E (GSO(Λ)),

dimQ S2(ZK ) + # Cl+(K )/Cl+(K )2 = dimQM(GSO(Λ)),

which yields the result.
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