Hilbert modular forms from orthogonal modular forms on quaternary lattices

E. Assaf, D. Fretwell, C. Ingalls, A. Logan, S. Secord, J. Voight

Wesleyan Algebra/Number Theory Seminar

Oct 25 2024

Motivation

Theorem (Lagrange, 1770)

Every positive integer can be written as a sum of four squares.

Example

$$7 = 2^2 + 1^2 + 1^2 + 1^2$$

Question

In how many ways? $r_4(n) = \#\{\lambda \in \mathbb{Z}^4 : \sum_{i=1}^4 \lambda_i^2 = n\}.$

Example

$$r_4(7) = 4 \cdot 2^4 = 64$$

 $r_4(n) = 8, 24, 32, 8, 48, 96, 64, \dots$

Sums of four squares

Approach #1

- Write $\theta(q) = \sum_{n=0}^{\infty} r_4(n)q^n$.
- Show that θ belongs to a finite dimensional vector space V.
- Find a basis for V.
- Represent θ in that basis and compare coefficients.

Approach #2

• Use Quaternions -
$$B\langle i,j \rangle = \left(rac{-1,-1}{\mathbb{Q}} \right)$$
, $O = \mathbb{Z}\langle i,j \rangle$.

- Count elements of *O* with norm *n*.
- Reduce to count (right) O-ideals with norm n.
- Reduce to prime powers.
- Count separately for p = 2 and $p \neq 2$.

Modular curves

- The upper half plane is $\mathfrak{H} = \{z \in \mathbb{C} : \Im(z) > 0\}.$
- It admits an action of $GL_2^+(\mathbb{R})$ by Möbius transformations

$$\gamma = \left(\begin{array}{cc} \mathsf{a} & \mathsf{b} \\ \mathsf{c} & \mathsf{d} \end{array} \right) : \mathfrak{H} \to \mathfrak{H}, \quad \mathsf{z} \mapsto \gamma \mathsf{z} = \frac{\mathsf{a} \mathsf{z} + \mathsf{b}}{\mathsf{c} \mathsf{z} + \mathsf{d}}$$

- For a discrete $\Gamma \leq GL_2^+(\mathbb{R})$, can form $Y(\Gamma) = \Gamma \setminus \mathfrak{H}$.
- Specific groups Γ of interest

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) : c \equiv 0 \mod N \right\}$$

$$\Gamma_1(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N) : a, d \equiv 1 \mod N \right\}$$

- Note that $\gamma \mapsto d : \Gamma_0(N) \to (\mathbb{Z}/N\mathbb{Z})^{\times}$ has kernel $\Gamma_1(N)$.
- Compactify using cusps

$$X(\Gamma)=Y(\Gamma)\cup (\Gammaackslash \mathbb{P}^1(\mathbb{Q})), \quad X_0(N)=X(\Gamma_0(N))$$

• Fact: $X(\Gamma)$ is a compact Riemann surface.

Example

Local coordinate at ∞ for $X_0(N)$ is $q = e^{2\pi i z}$.

 For Γ torsion-free, let M₂(Γ) be differentials on X(Γ) holomorphic on Y(Γ) with at most simple poles at the cusps.

Theorem (Riemann-Roch, 1865)

 $\dim M_2(\Gamma) = g(X(\Gamma)) + \# cusps - 1$

Let $\pi : \mathfrak{H} \to X(\Gamma)$. For $\omega \in M_2(\Gamma)$ can consider $\pi^*(\omega) = f(z)dz$.

Example

For $X_0(N)$, if near ∞ , $\omega = g(q) \ dq$, then $\pi^*(\omega) = 2\pi i \ q \ g(q) \ dz$

Modular forms, cusp forms and characters

Thus $\omega \mapsto f(z)$ identifies $M_2(\Gamma)$ with hol. functions $f : \mathfrak{H} \to \mathbb{C}$, s.t.

$$(cz+d)^{-2}f(\gamma z) dz = f(\gamma z) d(\gamma z) = f(z) dz \quad \forall \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$$

- M₂(Γ) is the space of modular forms of level Γ (of weight 2).
- Write $S_2(\Gamma) \subseteq M_2(\Gamma)$ for the holomorphic differentials.
- The map $\omega \mapsto f(z)$ identifies $S_2(\Gamma)$ with the functions in $M_2(\Gamma)$ that vanish at the cusps, called **cusp forms**.
- $(\mathbb{Z}/N\mathbb{Z})^{ imes} \simeq \Gamma_0(N)/\Gamma_1(N)$ acts on $M_2(\Gamma_1(N))$ via

$$f(z)d(z)\mapsto f(\gamma_0 z)d(\gamma_0 z)$$

• Write $M_2(N, \chi)$ (resp. $S_2(N, \chi)$) for the χ -isotypic component, so $f \in M_2(N, \chi)$ iff

$$f(\gamma z) = \chi(d)(cz+d)^2 f(z) \quad \forall \gamma \in \Gamma_0(N)$$

$$X_0(4)$$

Example

We compute that

- $\Gamma_0(4) \setminus \mathbb{P}^1(\mathbb{Q}) = \{0, \frac{1}{2}, \infty\},\$
- $X_0(4) \simeq \mathbb{P}^1(\mathbb{C})$

so dim $M_2(\Gamma_0(4)) = 2$. The function $\theta(z) = \sum_{n=0}^{\infty} r_4(n)q^n$ is holomorphic, and

$$heta(z+1)= heta(z), \quad heta\left(rac{z}{4z+1}
ight)=(4z+1)^2 heta(z),$$

hence $\theta \in M_2(\Gamma_0(4))$. [Also invariant under $z \mapsto -\frac{1}{4z}$]

Theorem (Jacobi, 1834)

$$r_4(n)=8\sum_{4\nmid d\mid n}d.$$

Proof.

- Construct $E_2(z) = -\frac{1}{24} + \sum_{n=1}^{\infty} \sigma(n)q^n$.
- $v_1 = E_2(z) 2E_2(2z), v_2 = E_2(2z) 2E_2(4z) \in M_2(\Gamma_0(4)).$
- From first two terms deduce $\theta(z) = 8v_1 + 16v_2$

$$\sum_{i=1}^{n} r_4(n)q^n = 8(E_2(z) - 4E_2(4z)) = 8\left(\sum_{i=1}^{n} \sigma(n)q^n - \sum_{i=1}^{n} \sigma(n)q^{4n}\right)$$

yields $r_4(n) = \sum_{4 \nmid d \mid n} d$.

More generally, if $Q(x) = \sum_{i \leq j} a_{ij} x_i x_j$ is a quadratic form with $a_{ij} \in \mathbb{Z}$, we may consider

$$r_Q(n) = \#\{\lambda \in \mathbb{Z}^k : Q(\lambda) = n\}$$

and the function

$$heta_Q(z) = \sum_{n=0}^{\infty} r_Q(n) q^n = \sum_{\lambda \in \mathbb{Z}^k} q^{Q(\lambda)}$$

is again a modular form.

Quadratic forms and Lattices

Let $Q: V \to \mathbb{Q}$ be a positive definite quadratic space with $\dim_{\mathbb{O}} V = k$ with associated bilinear form

$$T(x,y) := Q(x+y) - Q(x) - Q(y).$$

Let $\Lambda \subseteq V$ be an even integral lattice, so that $Q(\Lambda) \subseteq \mathbb{Z}$. Define $\Delta = \operatorname{disc}(\Lambda) = \det T \in \mathbb{Z}$, and let $\Delta^* = \begin{cases} \Delta & 2 \nmid k \\ (-1)^{k/2} \Delta & 2 \mid k \end{cases}$

Given a lattice, we may construct associated theta series

$$heta_{\Lambda}(z)= heta_{\Lambda}^{(1)}(z)=\sum_{\lambda\in\Lambda}q^{Q(\lambda)},\quad q=e^{2\pi i z}$$

The **level** of Λ is the smallest N such that $NQ(\Lambda^{\sharp}) \subseteq \mathbb{Z}$. Then $\theta_{\Lambda}(z) \in M_{k/2}(N, \chi_{\Delta^*})$, where $\chi_{\Delta^*}(a) = (\frac{\Delta^*}{2})$.

Question

Can we study Λ by studying θ_{Λ} ? Is $\Lambda \mapsto \theta_{\Lambda}$ injective?

We define the orthogonal group

$$O(V) = \{g \in GL(V) : Q(gv) = Q(v)\}$$
$$O(\Lambda) = \{g \in O(V) : g\Lambda = \Lambda\}$$

and write SO(V) and SO(Λ) for those with det(g) = 1. Lattices Λ, Π are **isometric**, written $\Pi \simeq \Lambda$, if there exists $g \in O(V)$ such that $g\Lambda = \Pi$. The **genus** of Λ is

$$gen(\Lambda) := \{\Pi \subseteq V : \Lambda_p \simeq \Pi_p \text{ for all } p\}.$$

The class set $cls(\Lambda) = gen(\Lambda)/\simeq$ is the set of (global) isometry classes in gen(Λ). It is finite, by geometry of numbers.

Non-injectivity of θ

However, even the map θ : cls(Λ) $\rightarrow M_{k/2}(N, \chi_{\Delta^*})$ is not injective.

Example

•
$$D_k = \{x \in \mathbb{Z}^k : 2 \mid \sum_{i=1}^k x_i\}$$

•
$$E_k = D_k + \mathbb{Z} \cdot \frac{1}{2}(1,\ldots,1)$$

- Then disc (E_8) = disc (E_{16}) = 1, so $\theta_{E_{16}}, \theta_{E_8 \oplus E_8} \in M_8(1)$.
- dim $M_8(1) = 1$ implies $\theta_{E_{16}} = \theta_{E_8 \oplus E_8}$.
- However, $[E_{16}] \neq [E_8 \oplus E_8]$.

How do we know that?

Theorem (Freitag, 1983)

If $\mathfrak{H}_g = \{z \in M_g(\mathbb{C}) : z^t = z, \Im(z) > 0\}$, then for $z \in \mathfrak{H}_g$

$$heta_{\Lambda}^{(g)}(z) = \sum_{\lambda \in \Lambda^g} e^{\pi i \operatorname{Tr}(\lambda^t T \lambda z)} \in M_{k/2}^{(g)}(N, \chi_{\Delta^*})$$

Use g = 4.

Neighbors

Kneser's theory of *p*-neighbors gives an effective method to compute the class set; it also gives a Hecke action! Let $p \nmid \operatorname{disc}(\Lambda)$ be a prime; p = 2 is OK. We say that a lattice $\Pi \subseteq V$ is a *p*-neighbor of Λ , and write $\Pi \sim_p \Lambda$ if

$$[\Lambda:\Lambda\cap\Pi]=[\Pi:\Lambda\cap\Pi]=p.$$

If $\Lambda \sim_p \Pi$ then:

- $disc(\Lambda) = disc(\Pi)$,
- Π is integral, and
- $\Pi \in gen(\Lambda)$.

Moreover, there exists *S* such that every $[\Pi] \in cls(\Lambda)$ is an **iterated** *S*-neighbor of Λ .

$$\Lambda \sim_{p_1} \Lambda_1 \sim p_2 \cdots \sim_{p_r} \Lambda_r \simeq \Pi$$

with $p_i \in S$. Typically may take $S = \{p\}$.

Example - Computing the class set

Let $\Lambda = \mathbb{Z}^4$ with the quadratic form

$$Q(x_1, x_2, x_3, x_4) = x_1^2 + x_1x_2 + x_2^2 + x_3^2 + x_1x_4 + x_3x_4 + 3x_4^2$$

and bilinear form given by

$$[T_{\Lambda}] = \left(\begin{array}{rrrrr} 2 & 1 & 0 & 1 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 1 & 0 & 1 & 6 \end{array}\right)$$

Thus disc(Λ) = 29.

$$\Lambda' = rac{1}{2}\mathbb{Z}(e_2+e_4)+2\mathbb{Z}e_3+\mathbb{Z}e_1+\mathbb{Z}e_4$$

with corresponding quadratic form

$$Q(x) = x_1^2 + x_1x_2 + 4x_2^2 + x_1x_3 + x_3^2 + 3x_1x_4 + 2x_2x_4 + x_3x_4 + 3x_4^2$$

The space of **orthogonal modular forms** of level Λ is

$$M(O(\Lambda)) := \{ f : \mathsf{cls}(\Lambda) \to \mathbb{C} \} \simeq \mathbb{C}^{h(\Lambda)}$$

For $p \nmid \operatorname{disc}(\Lambda)$ define the **Hecke operator**

$$T_p: M(\mathcal{O}(\Lambda)) o M(\mathcal{O}(\Lambda))$$
 $f \mapsto \left([\Lambda'] \mapsto \sum_{\Pi' \sim_p \Lambda'} f([\Pi']) \right)$

The Hecke operators commute and are self-adjoint, hence there is a basis of simultaneous eigenvectors - **eigenforms**. (Gross, 1999)

Example - square discriminant

Let Λ have the Gram matrix

$$[T_{\Lambda}] = \begin{pmatrix} 2 & 0 & 0 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 6 & 0 \\ 1 & 0 & 0 & 6 \end{pmatrix}$$

so that disc(Λ) = det $T = 11^2$. Then $h(\Lambda) = 3$. Write cls(Λ) = {[Λ] = [Λ ₁], [Λ ₂], [Λ ₃]}. Then a basis of eigenforms is given by

$$\begin{split} \phi_1 &= [\Lambda_1] + [\Lambda_2] + [\Lambda_3], \qquad \phi_2 &= 4[\Lambda_1] - 6[\Lambda_2] + 9[\Lambda_3] \\ \phi_3 &= 4[\Lambda_1] + [\Lambda_2] - 6[\Lambda_3], \end{split}$$

and we have

$$\begin{aligned} \theta(\phi_1) &= \frac{5}{12} + q + 3q^2 + 4q^3 + 7q^4 + 6q^5 + 12q^6 + O(q^7) \in E_2(11) \\ \theta(\phi_2) &= q - 2q^2 - q^3 + 2q^4 + q^5 + 2q^6 - 2q^7 + O(q^9) \in S_2(11) \\ \end{aligned}$$
where $T_p(\phi_2) &= \lambda_p \phi_2$ with $\lambda_2 = 4, \lambda_3 = 1, \lambda_5 = 1, \lambda_7 = 4, \ldots$

Theorem (A., Fretwell, Ingalls, Logan, Secord, and Voight (2022), consequence of Rallis (1982))

If k is even, ϕ is an eigenform and $f = \theta^{(g)}(\phi) \neq 0$ with 2g < k:

$$L(\phi, s) = L\left(\chi_{D^*} \otimes f, std, s - \left(\frac{k}{2} - 1\right)\right) \prod_{i=g-\left(\frac{k}{2} - 1\right)}^{\left(\frac{k}{2} - 1\right)-g} \zeta\left(s + i - \left(\frac{k}{2} - 1\right)\right).$$

If g = 1, then obtain $L(\chi_D \otimes \operatorname{Sym}^2(f), s)$ and zeta factors so

$$\lambda_{p} = a_{p}^{2} - \chi_{D^{*}}(p)p^{\frac{k}{2}-1} + p\left(rac{p^{k-3}-1}{p-1}
ight)$$

where a_p are the eigenvalues of f.

Example - Nonsquare discriminant

Let Λ be as before with discriminant 29. By checking isometry we compute w.r.t. basis $[\Lambda'], [\Lambda]$

$$[T_2] = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, [T_3] = \begin{pmatrix} 4 & 3 \\ 6 & 7 \end{pmatrix}, [T_5] = \begin{pmatrix} 18 & 9 \\ 18 & 27 \end{pmatrix}, \dots$$

The constant function $\phi_1 = [\Lambda] + [\Lambda']$ is an **Eisenstein series** with $T_p(\phi_1) = (p^2 + (1 + \chi_{29}(p)) + 1)\phi_1$. Another eigenvector is $\phi_2 = [\Lambda] - 2[\Lambda']$, with $T_p(\phi_2) = \lambda_p \phi_2$

$$\lambda_2 = -1, \lambda_3 = 1, \lambda_5 = 9, \lambda_7 = 4, \lambda_{11} = 17, \dots$$

But

$$\theta(\phi_2) = q - rac{3}{2}q^2 + rac{3}{2}q^3 - 3q^4 - 3q^5 + O(q^6)$$

is not an eigenform. We match them with the **Hilbert modular** form labeled 2.2.29.1-1.1-a in the LMFDB.

Towards a bijection?

Would like to have a bijection between orthogonal modular forms and Hilbert modular forms, but... Consider $Q(x) = x_1^2 + x_2^2 + x_3^2 + x_1x_4 + x_2x_4 + 3x_4^2$ with Gram matrix

$$[T_{\Lambda}] = \left(\begin{array}{rrrr} 2 & 0 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 1 & 1 & 0 & 6 \end{array}\right)$$

and disc(Λ) = 40.

- Then dim $S(O(\Lambda)) = 1 \neq 2 = \dim S_2(\mathbb{Z}[\sqrt{10}]).$
- This is because of the lattice Λ_2 with form $Q_2(x) = x_1^2 + x_2^2 + 2x^3 + x_2x_4 + 2x_3x_4 + 2x_4^2$.
- Although $\Lambda_2 \notin gen(\Lambda_1)$, it is everywhere locally similar to Λ_1 .

We define the general orthogonal group

$$\begin{aligned} \mathsf{GO}(V) &= \{ g \in \mathsf{GL}(V) : Q(gv) = \mu(g)Q(v), \quad \mu(g) \in \mathbb{Q}^{\times} \} \\ \mathsf{GO}(\Lambda) &= \{ g \in \mathsf{GO}(V) : g\Lambda = \Lambda \} \end{aligned}$$

and write GSO(V) and $GSO(\Lambda)$ for those with det(g) > 0. Lattices Λ, Π are similar, written $\Pi \sim \Lambda$, if there exists $g \in GO(V)$ such that $g\Lambda = \Pi$. The similarity genus of Λ is

$$\operatorname{sgen}(\Lambda) := \{\Pi \subseteq V : \Lambda_p \sim \Pi_p \text{ for all } p\}.$$

The similarity class set $scls(\Lambda) = sgen(\Lambda)/\sim$ is the set of (global) similarity classes in $sgen(\Lambda)$. It is finite, by geometry of numbers.

Assume that k = 4.

Theorem (A., Fretwell, Ingalls, Logan, Secord, and Voight (2024)) Assume disc(Λ) = D_0N^2 , $K = \mathbb{Q}[\sqrt{D_0}]$. Then $S(GO(\Lambda)) \hookrightarrow S_2(N\mathbb{Z}_K)_{G_K}$

with image the projection of $S_2(N\mathbb{Z}_K; W = \epsilon)^{D\text{-new}}$

- G_K = Gal(K|ℚ) acts naturally on the space of Hilbert modular forms.
- *D* is the product of the anisotropic primes.
- For $p \mid N$, we set $\epsilon_p = -1$ if $p \mid D$, else $\epsilon_p = 1$.
- W_p is the Atkin-Lehner involution at $p\mathbb{Z}_K \mid N\mathbb{Z}_K$.

- Works over a totally real field F.
- Functorial, hence arbitrary weight.
- Twisting by the spinor norm, can obtain other AL signs.
- Can identify explicitly the space $M(O(\Lambda))$ using twisting by Hecke characters and unit characters.
- Lattices have to be residually binary everywhere.

Key ideas - Quaternions and even Clifford

The even Clifford algebra $B = C_0(V)$ is quaternion with center K. It also maps lattices in V to orders in B.

Even Clifford extends to a map

$$C_0: \mathrm{GSO}(V) \to (B^{\times} \times F^{\times})/K^{\times}.$$

Theorem (A., Fretwell, Ingalls, Logan, Secord, and Voight (2024)) The even Clifford map induces an isomorphism

$$C_0^*: M_{\rho}(C_0(\Lambda)^{\times}, \psi^{-1} \circ \operatorname{Nm}_{K|F})^{AL_F(C_0(\Lambda))} \longrightarrow M_{C_0^*\rho}(\operatorname{GSO}(\Lambda), \psi).$$

- Sends \mathfrak{P} -neighbors to \mathfrak{P} -neighbors.
- Sends \mathfrak{p}^1 -neighbors to $\mathfrak{p}\mathbb{Z}_{\mathcal{K}}$ -neighbors.
- Also induces $C_0 : \operatorname{GO}(V)/F^{\times} \to \operatorname{Aut}_F(B)$, with

$$0 o B^{ imes}/K^{ imes} \simeq \operatorname{Aut}_K(B) o \operatorname{Aut}_F(B) o \operatorname{Gal}(K|F) o 0.$$

••
$$\cong$$

• $[A_1 \times A_1 = D_2, \text{ equiv. } \mathfrak{sl}_2 \oplus \mathfrak{sl}_2 \cong \mathfrak{so}_4]$

We obtain commutative diagrams of Hecke modules

The bottom line is:

- Yoshida lift when $K = F \times F$ and f, g are both cuspidal.
- Saito-Kurokawa lift when $K = F \times F$ otherwise.
- Asai lift when K is a field.

Shows that when K is a field (e.g. D = 4p (Kaylor, 2019)), θ_2 is injective (non-vanishing).

Applications - Hilbert modular surfaces

Corollary ((Chan, 1999), Theorem 1)

Let $K = \mathbb{Q}(\sqrt{D})$, and let Y_{ϵ} be the components of the Hilbert modular surface over K.

$$\sum_{\kappa \in \mathsf{Cl}^+(\mathcal{K})/\operatorname{Cl}^+(\mathcal{K})^2} (p_g(Y_\epsilon) + 1) = \sum_{\Lambda} \# \operatorname{cls}(\operatorname{SO}(\Lambda)),$$

where Λ ranges over genera of lattices of discriminant D.

Proof.

Main theorem implies dim_Q $S_2(\mathbb{Z}_K) = \dim_Q S(GSO(\Lambda))$. But

$$\#\operatorname{Cl}^+(\mathcal{K})/\operatorname{Cl}^+(\mathcal{K})^2 = \#\mu(\operatorname{cls}(\operatorname{GSO}(\Lambda))) = \dim_{\mathbb{Q}} E(\operatorname{GSO}(\Lambda)),$$

 $\dim_{\mathbb{Q}} S_2(\mathbb{Z}_{\mathcal{K}}) + \# \operatorname{Cl}^+(\mathcal{K})/\operatorname{Cl}^+(\mathcal{K})^2 = \dim_{\mathbb{Q}} M(\operatorname{GSO}(\Lambda)),$

which yields the result.

Asai, Tetsuya. 1977. On certain Dirichlet series associated with Hilbert modular forms and Rankin's method, Math. Ann. **226**, no. 1, 81–94, DOI 10.1007/BF01391220. MR429751

Auel, Asher and John Voight. 2021. *Quaternary Quadratic Forms and Quaternion Ideals*. unpublished.

Böcherer, Siegfried and Rainer Schulze-Pillot. 1991. *Siegel modular forms and theta series attached to quaternion algebras*, Nagoya Math. J. **121**, 35–96, DOI 10.1017/S0027763000003391. MR1096467

Chan, Wai Kiu. 1999. *Quaternary even positive definite quadratic forms of discriminant* 4*p*, J. Number Theory **76**, no. 2, 265–280, DOI 10.1006/jnth.1998.2363.

A., Dan Fretwell, Colin Ingalls, Adam Logan, Spencer Secord, and John Voight. 2022. *Definite orthogonal modular forms: excursions*.

_____. 2024. Orthogonal modular forms attached to quaternary lattices.

Gross, Benedict H. 1999. *Algebraic modular forms*, Israel J. Math. **113**, 61–93, DOI 10.1007/BF02780173.

Hein, Jeffery. 2016. Orthogonal modular forms: An application to a conjecture of birch, algorithms and computations, ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)–Dartmouth College.

Ibukiyama, Tomoyoshi. 2012. *Saito-Kurokawa liftings of level N and practical construction of Jacobi forms*, Kyoto J. Math. **52**, no. 1, 141–178, DOI 10.1215/21562261-1503791.

Kaylor, Lisa. 2019. *Quaternary quadratic forms of discriminant* 4*p*, Ph.D. Thesis, Wesleyan University.

Kurokawa, Nobushige. 1978. *Examples of eigenvalues of Hecke operators on Siegel cusp forms of degree two*, Invent. Math. **49**, no. 2, 149–165, DOI 10.1007/BF01403084.

Ponomarev, Paul. 1976. Arithmetic of quaternary quadratic forms, Acta Arith. **29**, no. 1, 1–48, DOI 10.4064/aa-29-1-1-48.

Rallis, Stephen. 1982. Langlands' functoriality and the Weil representation, Amer. J. Math. 104, no. 3, 469–515, DOI 10.2307/2374151.

Saito, Hiroshi. 1977. *On lifting of automorphic forms*, Séminaire Delange-Pisot-Poitou, 18e année: 1976/77, Théorie des nombres, Fasc. 1, Secrétariat Math., Paris, pp. Exp. No. 13, 6.

Yoshida, Hiroyuki. 1980. *Siegel's modular forms and the arithmetic of quadratic forms*, Invent. Math. **60**, no. 3, 193–248, DOI 10.1007/BF01390016.